A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions
نویسندگان
چکیده
STIM1 and Orai1 are the main components of a widely conserved Calcium influx pathway known as store-operated calcium entry (SOCE). STIM1 is a calcium sensor, which oligomerizes and activates Orai channels when calcium levels drop inside the endoplasmic reticulum (ER). The series of molecular rearrangements that STIM1 undergoes until final activation of Orai1 require the direct exposure of the STIM1 domain known as SOAR (Stim Orai Activating Region). In addition to these complex molecular rearrangements, other constituents like lipids at the plasma membrane, play critical roles orchestrating SOCE. PI(4,5)P2 and enriched cholesterol microdomains have been shown as important signaling platforms that recruit the SOCE machinery in steps previous to Orai1 activation. However, little is known about the molecular role of cholesterol once SOCE is activated. In this study we provide clear evidence that STIM1 has a cholesterol-binding domain located inside the SOAR region and modulates Orai1 channels. We demonstrate a functional association of STIM1 and SOAR to cholesterol, indicating a close proximity of SOAR to the inner layer of the plasma membrane. In contrast, the depletion of cholesterol induces the SOAR detachment from the plasma membrane and enhances its association to Orai1. These results are recapitulated with full length STIM1.
منابع مشابه
Single-molecule analysis of diffusion and trapping of STIM1 and Orai1 at endoplasmic reticulum–plasma membrane junctions
Following endoplasmic reticulum (ER) Ca(2+) depletion, STIM1 and Orai1 complexes assemble autonomously at ER-plasma membrane (PM) junctions to trigger store-operated Ca(2+) influx. One hypothesis to explain this process is a diffusion trap in which activated STIM1 diffusing in the ER becomes trapped at junctions through interactions with the PM, and STIM1 then traps Orai1 in the PM through bind...
متن کاملSTIM1/Orai1 coiled-coil interplay in the regulation of store operated calcium entry
Orai1 calcium channels in the plasma membrane are activated by stromal interaction molecule-1 (STIM1), an endoplasmic reticulum calcium sensor, to mediate store-operated calcium entry (SOCE). The cytosolic region of STIM1 contains a long putative coiled-coil (CC)1 segment and shorter CC2 and CC3 domains. Here we present solution nuclear magnetic resonance structures of a trypsin-resistant CC1-C...
متن کاملSTIM1 couples to ORAI1 via an intramolecular transition into an extended conformation
Stromal interaction molecule (STIM1) and ORAI1 are key components of the Ca(2+) release-activated Ca(2+) (CRAC) current having an important role in T-cell activation and mast cell degranulation. CRAC channel activation occurs via physical interaction of ORAI1 with STIM1 when endoplasmic reticulum Ca(2+) stores are depleted. Here we show, utilizing a novel STIM1-derived Förster resonance energy ...
متن کاملTranslocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating
The Orai1-STIM1 current undergoes slow Ca(2+)-dependent inactivation (SCDI) mediated by the binding of SARAF to STIM1. Here we report the use of SCDI by SARAF as a probe of the conformation and microdomain localization of the Orai1-STIM1 complex. We find that the interaction of STIM1 with Orai1 carboxyl terminus (C terminus) and the STIM1 K-domain are required for the interaction of SARAF with ...
متن کاملConformational Changes in the Orai1 C-Terminus Evoked by STIM1 Binding
Store-operated CRAC channels regulate a wide range of cellular functions including gene expression, chemotaxis, and proliferation. CRAC channels consist of two components: the Orai proteins (Orai1-3), which form the ion-selective pore, and STIM proteins (STIM1-2), which form the endoplasmic reticulum (ER) Ca2+ sensors. Activation of CRAC channels is initiated by the migration of STIM1 to the ER...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016